Tobias Worledge, Fall 2024
In this project, I explored using denoising models to generate images based on text descriptions and initial images. I then built a denoising model specifically for the MNIST dataset.
I began by implementing a function that could add a defined amount of noise to a given image. Here are a few examples of increasingly noisy images of the Campanile.
Original (t=0)
t=250
t=500
t=750
Here were my attempts to denoise these images using a Gaussian filter. It's pretty rough!
Denoised t=250 (kernel=5, sigma=4)
Denoised t=500 (kernel=5, sigma=5)
Denoised t=750 (kernel=5, sigma=3)
Now using a denoising model, here are some results with one-step denoising!
Onestep Denoised t=250
Onestep Denoised t=500
Onestep Denoised t=750
Now let's try iterative denoising!
Original
Iterative Denoised
Onestep Denoised
Gaussian Filter
If we try to denoise starting with an image of pure noise, we get images like this!
Image to image translation!
i_start=1
i_start=3
i_start=5
i_start=7
i_start=10
i_start=20
i_start=1
i_start=3
i_start=5
i_start=7
i_start=10
i_start=20
Hand-drawn and Web Images
Pixeldog
i_start=1
i_start=3
i_start=5
i_start=7
i_start=10
i_start=20
Stickfigure
i_start=1
i_start=3
i_start=5
i_start=7
i_start=10
i_start=20
Normaldog
i_start=1
i_start=3
i_start=5
i_start=7
i_start=10
i_start=20
Campanile
i_start=1
i_start=3
i_start=5
i_start=7
i_start=10
i_start=20
Dog
i_start=1
i_start=3
i_start=5
i_start=7
i_start=10
i_start=20
Campanile Rocket
i_start=1
i_start=3
i_start=5
i_start=7
i_start=10
i_start=20
Flip Illusions
Example 1 of campfire old man
Example 2 of campfire old man
Snow village and a waterfall
Low/High Pass Filter Illusions
Skull waterfall
Rocketship Pencil
Hipster Barrista
Number 0
Number 1
Number 4
Number 5